太陽光発電の現状と導入見込み及び課題について

一般社団法人 太陽光発電協会
1. 太陽光発電の市場動向

・国内出荷動向
・設備認定状況
・導入状況
・国内／海外寄与率
・今後の設備認定、導入見通し
世界各国の太陽エネルギーの電力比率　2013年

IEAPVPS Snap shot2013 2014.3.31報告から引用

日本 1.4%
日本の太陽電池国内出荷量推移

2014年度の国内太陽電池出荷量は10GW(1,000万kW)に届く見込み

出典：JPEA出荷統計資料より
太陽電池の国別導入量（2013年末時点）

2013年暦年導入量（累計）計：135GW

- ドイツ 35.5GW 26.3%
- 中国 18.3GW 13.6%
- イタリア 17.6GW 13.1%
- 日本 12.4GW 9.2%
- アメリカ 12.0GW 8.9%
- スペイン 5.6GW 4.2%
- オーストラリア 3.3GW 2.5%
- フランス 4.6GW 3.4%
- イギリス 2.9GW 2.1%
- ベルギー 3.0GW 2.2%
- その他 19.6GW 14.5%

IEA PVPS 資料を参考に JPEA 作成
※ 日本：経済産業省 News Release 掲載の数値より計算
モジュールの総出荷量における日本企業と外国企業の割合

2013年度第1四半期
日本企業: 1,292MW (78%)
外国企業: 372MW (22%)

2013年度第2四半期
日本企業: 1,578MW (75%)
外国企業: 534MW (25%)

2013年度第3四半期
日本企業: 1,570MW (76%)
外国企業: 493MW (24%)

2013年度第4四半期
日本企業: 1,985MW (71%)
外国企業: 801MW (29%)

2014年度第1四半期
日本企業: 1,390MW (69%)
外国企業: 618MW (31%)

2014年度第2四半期
日本企業: 1,825MW (71%)
外国企業: 741MW (29%)

2014年度第3四半期
日本企業: 1,663MW (68%)
外国企業: 798MW (32%)

出典：JPEA出荷統計資料より
太陽光発電 2013年度
国内システム市場規模（金額）を100とした場合
＜＞ 内は2012年度の推計値

〜モジュールメーカー出荷合計〜
26.3

出典：JPEA出荷統計からの推計

注：海外ブランド・モジュール売上中、国内寄与分は「日本販売法人分」が相当
2012年度、2013年度は設備認定量のうち、「取消・断念」量を想定して「実質の設置想定量」を試算
2014年度以降は、一定の取り下げ率を適用して「実質の設置想定量」を試算

＜取消・断念想定量の前提条件＞
・10kW未満は取消・断念はないものとして試算
・2012年度の認定設備に対して実施された報告徴収の「設置断念設備」及び「徴収後廃止・取下設備」合計の構成比を試算し、その数値を2012年度、2013年度の設備認定量に乗じて、取消・断念の量とし、設置想定量を試算
・2014年度以降は、設備認定量を協会内で試算し、その中で一定の取消・断念率（過去の補助金キャンセル率）を、設置想定量を試算
＜年度ごとの導入量試算の前提条件＞
- 2014年12月の第8回新エネルギー小委員会で示された7電力会社毎の再生可能エネルギー導入量限界を2020年までの導入限界量として試算
- 上記以外の3電力会社に対しては、2012年度、2013年度の設備認定量の内、取消・断念を除した設置想定量に基づき、年度ごとの導入想定量を試算
- 2014年度以降は、設置の最大ネックとなる施工能力の上限値を年度の設置上限値として試算

太陽光発電協会内の主な発電事業者に対して実施したヒアリング結果により、施工経験値等を踏まえて翌年度以降を試算。2013年度実績（7GW）に対して2014年度は前年比110%、2015年度以降は2014年比105%を施工能力の上限として試算

現在の設備認定量をベースに、今後様々な対策を実施する事を前提に太陽光発電協会として導入量を試算した結果→「2020年・66GW／2030年・100GW」
2. 現状の課題とエネルギーミックスへの対策
＜エネルギーのベストミックスの観点から＞

● 太陽光発電システム大量普及がもたらすベネフィット

● 太陽光発電導入の課題①
→ 再エネ大量導入を可能とするために

● 太陽光発電導入の課題②
→ コスト
エネルギーのベストミックスの観点から
～太陽光発電システム大量普及がもたらすベネフィット～
＜全電力中の構成比＝2020年・7％／2030年・11％
→再エネ全体構成比に換算すれば？＞
1. 海外に依存しない国産電力・エネルギーの確保
 →エネルギー自給率の拡大。国民の暮らしを守るエネルギー・セキュリティへの貢献 ⇒原子力vs再エネではなく、火力の低減！
2. 温室効果ガス排出削減による地球環境保護への貢献
3. 産業・市場創出拡大による国内経済活性化への貢献
 →約3兆円市場の90％以上が国内へ還流
 →地方創生、地方活性化の重要な起爆剤
4. 電力システム・EMSを含めた技術革新への機会
 →世界に冠たる新たな日本の系統インフラ構築へ向けて
5. 20年後のほぼゼロ・コスト・エネルギー創出へ
 →未来の子供たちへ残せる正の遺産として
エネルギーのベストミックスの観点から

〜太陽光発電導入の課題①

→再エネ大量導入を可能とするために～

1. 高度かつ効率的な出力制御技術による需給最適化
 →スマートEMS（Energy Management System）への進化

2. 広域的地域間連系ネットワークへの革新による縦横無尽なエネルギーコントロールを可能に
 →系統システムの高度化、上記1.を含めた最適化運用

3. 火力・水力等における系統電源調整能力の更なる技術的進化と活用（現状との比較精査含め）

4. 蓄電池、水素等によるエネルギー貯蔵技術システムの活用

5. ダイナミック・プライシング等を用いた需要の能動化（デマンドレスポンス）
 →「捨てるより使う」チャレンジ
エネルギーのベストミックスの観点から

～太陽光発電導入の課題② →コスト～

1. FIT効果により着実にマテリアル・コストは低減
 →グリッド・パリティを超えて、更なるコストダウンの努力が業界として必須

2. 賦課金試算について
 ①設備認定量ではなく、実際の導入量による試算要
 ②適正な回避可能費用による算定要
 ⇔電力会社経営への寄与分（電気料金抑制効果）を評価要

3. 化石燃料費用の軽減効果

4. 系統整備・強化コストの位置付けとして
 →再エネ導入の為だけならず、世界に冠たる「系統」という重要
 なインフラ高度化（新幹線や高速道路の整備と同様）への
 投資でもあると思料

5. FIT買取期間（20年）でなく、買取終了後の10～20年
 （設置後30～40年）におけるコスト効果を視野に
 →ほぼゼロ・コストの国産エネルギーが大量に創出
住宅用太陽光発電のシステム価格推移

万円／kW

既築：赤
平均：青
新築：黄

出典：NEF・NEDOフィールドテスト事業実績資料、J-PECの資料をもとにJPEA作成
太陽光発電 便益の試算結果

■ 累計設置量 2020年66GW（*1）、2030年100GW（*1）におけるエネルギー自給率貢献、化石燃料輸入コスト削減効果、地球温暖化ガス削減効果を試算
■ エネルギー自給率貢献 2013年1.5%→2020年8.1%→2030年12.2%
■ 化石燃料輸入コスト削減効果 石油火力代替 2020年12,048億円/年→2030年18,255億円/年
■ 地球温暖化ガス削減効果 日本全体への削減率効果 2020年2.8%→2030年4.2%

<table>
<thead>
<tr>
<th>太陽光発電 累計導入容量</th>
<th>GW</th>
<th>66</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>太陽光発電 総発電量</td>
<td>GWh</td>
<td>74,078</td>
<td>112,412</td>
</tr>
</tbody>
</table>

エネルギー自給率の向上

| 国内総発電電力量に占める割合 | % | 8.1% | 12.2% |

化石燃料輸入コスト削減効果

| 石油火力（熱効率39%）代替えケース | 億円/年 | 12,048 | 18,255 |
| LNG火力（熱効率45%）代替えケース | 億円/年 | 9,284 | 14,067 |

地球温暖化ガス削減効果

CO2削減総量	トン/年	36,969,776	56,014,812
発電に伴うCO2排出量に対する削減率	%	7.7%	11.7%
日本全体の温室効果ガス排出量に対する削減率	%	2.8%	4.2%
ご清聴いただき、ありがとうございます。

一般社団法人 太陽光発電協会
http://www.jpea.gr.jp/